内容字号:默认大号超大号

段落设置:段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

我们还演示了如何通过我们称为Mobile

2018-01-05 23:36 出处:未知 人气: 评论(0

  谷歌今天发布MobileNet重大更新,推出MobileNetV2,在结构上可分离卷积为基础,在层与层之间增加了线性的bottleneck,并且bottleneck之间也增加了残差连接,因此速度更快,精度更高,更适合设备上处理。

  去年我们推出了MobileNetV1,这是一系列专为移动设备设计的通用计算机视觉神经网络,支持分类、检测等功能。在个人移动设备上运行深度网络的能力可改善用户体验,随时随地访问,并为安全性、隐私和能耗提供额外优势。谷歌随着新应用的出现,用户可以与真实世界进行实时交互,因此对更高效的神经网络也提出了需求。

  今天,我们很高兴地宣布推出支持下一代移动视觉应用的MobileNetV2。相比MobileNetV1,MobileNetV2有了一些重大改进,推进了分类、对象检测和语义分割等移动视觉识别技术的最好性能。MobileNetV2作为TensorFlow-Slim图像分类库的一部分发布,你也可以在下载Jupyter笔记本,或者直接在Colaboratory环境中探索MobileNetV2。

  MobileNetV2的设计直觉是,bottleneck对模型的中间输入和输出进行编码,而内部的层则封装了模型从低级概念(比如像素)转换为更高级的描述(比如图像类别)的能力。最后,与传统的残差连接一样,shortcut可以让训练速度更快,准确性更高。

  总体而言,MobileNetV2模型在精度相同的情况下,整体速度都更高。特别是,V2使用的操作次数减少了2倍,参数减少了30%,在Google Pixel手机上的速度比MobileNetV1模型快30%至40%,同时实现了更高的准确性。

  MobileNetV2作为物体检测和分割的特征提取器是非常有效的。例如,当与SSDLite[2]配对进行检测时,新模型在取得相同精度的情况下,要比MobileNetV1快大约35%。我们已经在Tensorflow Object Detection API下开源了这一模型[4]。

  MobileNetV2提供了一个非常高效的面向移动的模型,可以用作许多视觉识别任务的基础。希望通过与更广泛的学术和开源社区分享这一技术,我们能够帮助推动研究和应用程序的开发。

  在本文中,我们描述了一种新的移动架构MobileNetV2,改善了移动模型在很多任务和基准中的state of the art,并且在很多不同尺寸的移动模型上做到了这一点。我们描述了将这些移动模型应用在我们称之为SSDLite的新框架中进行对象检测的有效方法。此外,我们还演示了如何通过我们称为Mobile DeepLabv3的简化形式DeepLabv3来构建移动语义分割模型。

  MobileNetV2架构基于反向残差结构,其中残差块的输入和输出是薄的瓶颈层,与传统残差模型相反——传统残差模型在输入中使用扩展表示(expanded representations),而MobileNetV2使用轻量级深度卷积过滤中间扩展层中的特征。此外,我们发现为了维持表示的能力(representational power),去除很窄的层中的非线性非常重要。我们证明这可以提高性能,并提供得出这一设计的直觉。最后,我们的方法能将输入/输出域与转换的表达性分开,为进一步分析提供了便利的框架。我们衡量了新模型在ImageNet分类,COCO物体检测,VOC图像分割方面的性能。我们评估了精度和MAdd操作次数之间的trade-of。

分享给小伙伴们:
本文标签: 谷歌

相关文章

评论

发表评论愿您的每句评论,都能给大家的生活添色彩,带来共鸣,带来思索,带来快乐。

签名: 验证码: 点击我更换图片

评论列表

    Copyright © 2002-2018 北京pk10走势图 版权所有|黔ICP备16006823号-1